PLANETS, STARS AND NEBULAE

studied with photopolarimetry

Exlibris

Dieter Kannemann Professor, Dr. rer. nat. Dipl. - Phys. et - Ing.

Lit108

T. GEHRELS, editor

Digitalisat: Prof. Dr. D. Hannemann

THE UNIVERSITY OF ARIZONA PRESS

Copyright © 1974 The Arizona Board of Regents All Rights Reserved Manufactured in the U.S.A.

> I.S.B.N. 8165-0428-8 L. C. No. 73-86446

(Courtesy J. S. Hall, Lowell Observatory)

Merope Nebula and directions of electric vector maximum; largest polarizations are about 12 percent. North is at top, east is left.

CONTENTS

FOREWORD John S. Hall	xiii
PREFACE T. Gehrels	xv
Part I GENERAL THEORY AND TECHNIQUES	
INTRODUCTION AND OVERVIEW T. Gehrels	3
POLARIMETRIC DEFINITIONS. D. Clarke	45
MECHANISMS THAT PRODUCE LINEAR AND CIRCULAR POLARIZATION J. R. P. Angel	54
ELECTROMAGNETIC RADIATION AND DISSYMMETRY Dennis J. Caldwell and Henry Eyring	64
COHERENCE AND ITS APPLICATION IN THE BEAM-FOIL LIGHT SOURCE C. H. Liu and S. Bashkin	88
SOME EXAMPLES OF EXACT AND APPROXIMATE SOLUTIONS IN SMALL PARTICLE SCATTERING: A PROGRESS REPORT J. Mayo Greenberg	107
POLARIMETERS FOR OPTICAL ASTRONOMY K. Serkowski	135
APPLICATION OF MUELLER CALCULUS IN ASTRONOMICAL POLARIMETRY: ACHROMATIC MODULATORS AND POLARIZATION CONVERTERS, AND DEPOLARIZERS J. Tinbergen	175
OPTICAL POLARIMETERS IN SPACE David L. Coffeen	189
PHOTOGRAPHIC POLARIZATION MEASUREMENTS OF VENUS Reta Beebe	218

SPATIAL DISTRIBUTION OF POLARIZATION OVER THE DISKS OF VENUS, JUPITER, SATURN, AND THE MOON John W. Fountain	223
DIFFRACTION GRATING POLARIZATION James B. Breckinridge	232
ATTEMPT TO MEASURE STELLAR MAGNETIC FIELDS USING A LOW-LIGHT LEVEL TELEVISION CAMERA G. G. Fahlman, J. W. Glaspey, O. Jensen, G. A. H. Walker, and J. R. Auman	237
THE HIGH ALTITUDE OBSERVATORY STOKES POLARIMETER T. Baur, G. W. Curtis, H. Hull, and J. Rush	246
THE HIGH ALTITUDE OBSERVATORY CORONAL- EMISSION-LINE POLARIMETER C. W. Querfeld	254
STELLAR AND SOLAR X-RAY POLARIMETRY R. Novick	262
THE BERKELEY INFRARED POLARIZATION SURVEY Robert Landau	318
ASTRONOMICAL POLARIMETRY IN THE FAR INFRARED (10–1000 μm) G. Dall'Oglio, B. Melchiorri, F. Melchiorri, V. Natale, S. Aiello, and F. Mencaraglia	322
RADIO MEASUREMENTS OF POLARIZATION R. G. Conway	352
RADAR POLARIMETRY G. Leonard Tyler	359
Part II — SURFACES AND MOLECULES	
POLARIZATION EFFECTS IN THE OBSERVATION OF ARTIFICIAL SATELLITES	371

Kenneth E. Kissell	
POLARIZATIONS OF ASTEROIDS AND SATELLITES Edward Bowell and Ben Zellner	381
POLARIZATION IN A MINERAL ABSORPTION BAND Carle E. Pieters	405
MIE SCATTERING OF THE INTERPLANETARY MAGNETIC FIELD BY THE WHOLE MOON C. P. Sonett and D. S. Colburn	419

CONTENTS

HEURISTIC ARGUMENTS FOR THE PATTERN OF POLARIZATION IN DEEP OCEAN WATER John E. Tyler	434
THE POLARIZATION OF LIGHT IN THE ENVIRONMENT K. L. Coulson	444
POLARIMETERS IN ANIMALS Talbot H. Waterman	472
THE CIRCULAR POLARIZATION OF LIGHT REFLECTED FROM CERTAIN OPTICALLY ACTIVE SURFACES Ramon D. Wolstencroft	495
POLARIMETRIC INVESTIGATIONS OF THE TURBIDITY OF THE ATMOSPHERE OVER LOS ANGELES T. Takashima, H. S. Chen, and C. R. Nagaraja Rao	500
MEASUREMENTS OF THE ELLIPTICAL POLARIZATION OF SKY RADIATION: PRELIMINARY RESULTS Dieter Hannemann and Ehrhard Raschke	510
NOCTILUCENT CLOUDS G. Witt	514
POLARIZATION STUDIES OF PLANETARY ATMOSPHERES D. L. Coffeen and J. E. Hansen	518
INVARIANT IMBEDDING AND CHANDRASEKHAR'S PLANETARY PROBLEM OF POLARIZED LIGHT S. Ueno, S. Mukai, and A. P. Wang	582
POLARIZATION MEASUREMENTS OF JUPITER AND THE GREAT RED SPOT John S. Hall and Louise A. Riley	593
POLARIZATION INVESTIGATIONS OF THE PLANETS CARRIED OUT AT THE MAIN ASTRONOMICAL OBSERVATORY OF THE UKRAINIAN ACADEMY OF SCIENCES O. I. Bugaenko, A. V. Morozhenko, and E. G. Yanovitskii	599
CIRCULAR POLARIZATION OF PLANETS James C. Kemp	607
POLARIZATION IN ASTRONOMICAL SPECTRA: THEORETICAL EVIDENCE A. L. Fymat	617
ASTRONOMICAL FOURIER SPECTROPOLARIMETRY F. F. Forbes and A. L. Fymat	637

Part III --- STARS AND NEBULAE

POLARIZATION FROM ILLUMINATED NONGRAY STELLAR ATMOSPHERES George W. Collins, II, and Paul F. Buerger	663
OBSERVATIONAL ASPECTS OF COHERENCE IN RADIO POLARIZATION MEASUREMENTS OF AREA SOURCES G. Feix	676
POLARIZATION MEASUREMENTS ON THE SUN'S DISK Donald L. Mickey and Frank Q. Orrall	686
THE FRENCH SOLAR PHOTOELECTRIC POLARIMETER AND ITS APPLICATIONS FOR SOLAR OBSERVATIONS Audouin Dollfus	695
POLARIZATION OF SOLAR EMISSION LINES E. Tandberg-Hanssen	730
POLARIZATION MEASUREMENTS WITHIN STELLAR LINE PROFILES D. Clarke and I. S. McLean	752
K-CORONA AND SKYLIGHT INFRARED POLARIMETRY JL. Leroy and G. Ratier	762
EXTRATERRESTRIAL POLARIZATION OF THE ZODIACAL LIGHT: ROCKET MEASUREMENTS AND THE HELIOS PROJECT C. Leinert, H. Link, and E. Pitz	766
MULTICOLOR POLARIMETRY OF THE NIGHT SKY Ramon D. Wolstencroft and John C. Brandt	768
POLARIZATION OF THE ZODIACAL LIGHT J. L. Weinberg	781
THE LINEAR POLARIZATION OF THE COUNTERGLOW REGION F. E. Roach, B. Carroll, L. H. Aller, and J. R. Roach	794
ZODIACAL LIGHT MODELS BASED ON NONSPHERICAL PARTICLES Richard H. Giese and Reiner Zerull	804
COMETARY POLARIZATIONS D. Clarke	814
COMET BENNETT 1970 II L. R. Doose and D. L. Coffeen	818
POLARIMETRY OF LATE-TYPE STARS Stephen J. Shawl	821

CONTENTS

AND ECLIPSING BINARY SYSTEMS Andrzej Kruszewski	845
ASTRONOMICAL POLARIMETRY FROM 1 TO 10 μ m H. M. Dyck	858
POLARIZATION STUDIES OF REFLECTION NEBULAE Ben Zellner	867
ORION NEBULA POLARIZATION Richard Hall	881
POLARIZATION BY INTERSTELLAR GRAINS George V. Coyne	888
MICROWAVE ANALOGUE STUDIES Reiner Zerull and Richard H. Giese	901
EFFECTS OF PARTICLE SHAPE ON THE SHAPE OF EXTINCTION AND POLARIZATION BANDS IN GRAINS J. Mayo Greenberg and Seung Soo Hong	916
INTERSTELLAR CIRCULAR POLARIZATION: A NEW APPROACH TO THE STUDY OF INTERSTELLAR GRAINS P. G. Martin	926
INTERSTELLAR CIRCULAR POLARIZATION OF EARLY-TYPE STARS James C. Kemp and Ramon D. Wolstencroft	939
POLARIZATION OF STARS IN ORION AND OTHER YOUNG REGIONS Michel Breger	946
INTERSTELLAR DUST IN DARK CLOUDS L. Carrasco, K. M. Strom, and S. E. Strom	954
INTERSTELLAR POLARIZATION AND THE GALACTIC MAGNETIC FIELD G. L. Verschuur	960
THE ORIENTATION OF THE LOCAL INTERSTELLAR DARK CLOUDS WITH RESPECT TO THE GALACTIC MAGNETIC FIELD W. Schlosser and Th. Schmidt-Kaler	972
STARLIGHT POLARIZATION BETWEEN BOTH MAGELLANIC CLOUDS Thomas Schmidt	976
OBSERVATIONS OF MAGNETIC CIRCULAR POLARIZATION OUTSIDE THE SOLAR SYSTEM J. D. Landstreet	981

INTRINSIC POLARIZATION AND THE TRANSVERSE ZEEMAN EFFECT IN MAGNETIC Ap STARS James C. Kemp and Ramon D. Wolstencroft	988
COMPUTATION OF STRONG MAGNETIC FIELDS IN WHITE DWARFS R. F. O'Connell	992
POLARIZATION OF PULSAR RADIATION W. J. Cocke	997
POLARIZATION AND STRUCTURE OF THE CRAB NEBULA James E. Felten	1014
RADIO POLARIMETRIC OBSERVATIONS OF SUPERNOVA REMNANTS D. K. Milne and John R. Dickel	1029
POLARIZATION OF EXTRAGALACTIC RADIO SOURCES A. G. Pacholczyk	1030
EXTRAGALACTIC OPTICAL POLARIMETRY Natarajan Visvanathan	1059
GLOSSARY	1084
LIST OF CONTRIBUTORS	1087
INDEX Mildred Shapley Matthews	1091

MEASUREMENTS OF THE ELLIPTICAL POLARIZATION OF SKY RADIATION: PRELIMINARY RESULTS

DIETER HANNEMANN and EHRHARD RASCHKE Ruhr-Universität, Bochum

A polarimeter has been built to measure quasi-monochromatically all four Stokes parameters of scattered incident solar radiation within the spectral range 0.5-1.1 µm. Ground-based measurements at 0.6 µm and 0.8 µm showed a considerable circular component in the sky radiation for polluted skies.

Multiple scattering in turbid planetary, as well as stellar, atmospheres causes linear and circular components of the polarization of scattered light. The degree and direction of polarization, the magnitude of the circular components, and the direction of rotation of the electrical vector of light, as described very elegantly by the four-dimensional Stokes vector, can be considered as signatures of various particles contained in these atmospheres. However, detailed theoretical studies with multiple scattering calculations of the relative importance of these four properties are still missing.

The investigations envisaged with the instrument described here are primarily concerned with water- and ice-clouds in the earth's atmosphere. They are in a preliminary state; thus, only ground-based measurements of sky radiation from cloudless and cloudy skies could be made.

PRINCIPLE OF THE MEASUREMENTS

The determinations of all four Stokes parameters I, Q, U, V are based in a straightforward manner on simultaneous measurements of six polarized radiances L as described by Born and Wolf (1965, Ch. 10.8) for quasi-monochromatic radiation. This is (first argument = direction of oscillation; second argument = retardation):

$$I = L(0^{\circ}, 0) + L(90^{\circ}, 0)$$

$$Q = L(0^{\circ}, 0) - L(90^{\circ}, 0)$$

$$U = L(45^{\circ}, 0) - L(135^{\circ}, 0)$$

$$V = L\left(45^{\circ}, \frac{\pi}{2}\right) - L\left(135^{\circ}, \frac{\pi}{2}\right).$$
(1)

The instrumental coordinates are chosen to coincide with the local vertical (0°) and horizontal (90°) directions at the instrument. The degree of polarization is obtained from

$$s = (Q^2 + U^2 + V^2)^{1/2}/I$$
 $(0 \le s \le 1).$ (2)

The direction of the major axis (= direction of polarization) is determined by

$$\tan 2\psi = \frac{U}{Q}, \qquad (0 \le \psi \le \pi), \tag{3}$$

and the ellipticity is described by

$$\sin 2\chi = V/(Q^2 + U^2 + V^2)^{1/2} \qquad \left(-\frac{\pi}{4} \le \chi \le +\frac{\pi}{4}\right)$$
(4)
= VI/s.

The sign of V determines the direction of rotation of the vector (V > 0: right-handed rotation).

INSTRUMENTAL CHARACTERISTICS

In brief, the instrument consists of an objective lens, an aperture for 7.5×7.5 field of view, and a field lens in front of a package with six analyzers and one retarder plate (for two analyzers). A filter is placed behind the analyzers to select the desired spectral range before radiation reaches 6 Si-avalanche-foto-diodes (TIXL 56). A multiplexer device enables a convenient storage for an A/D conversion before all six measurements are punched on tape for further automatic processing.

CALIBRATION

All optical components in front of the package of analyzers and the analyzers themselves change the polarization properties of incident radiation which can be described by an instrumental 4 by 4 vector matrix.

Fig. 1. Measurements obtained, for cloudless but very turbid skies at Bochum (19.9.72). Sun's elevation was 39°. Numbers at each polarization ellipse give the degree of polarization, the ellipticity (positive = right-handed), and the angle of the major axis.

The elements of this matrix (Jäger and Oetken 1963)¹ can be determined experimentally using, in four successive measurements: natural (unpolarized) light, linearly polarized light in 0° and in 45° directions, and elliptically polarized light. These four types of radiation can be produced in a simple device mounted in front of the instrument which enables easy calibrations during field measurements. Further calibration procedures include determinations of the characteristics of each of the six sensors; also the finite spectral width of the filter is taken into account in determining the average retardation.

¹Also see p. 175.

PRELIMINARY RESULTS

Figure 1 shows polarization ellipses obtained on 19 Sept. 1972 in Bochum from skylight measurements at 0.6 μ m. The sun's elevation was 39° while the sky was almost cloud free but very turbid and polluted. The fog was not uniformly distributed. In this figure the numbers beside each ellipse describe the degree of polarization, the ellipticity (positive numbers indicate right-handed rotation), and the angle of the major axis with respect to the instrument's coordinates.

In the sun's vertical, where measurements were obtained every 10° , the polarization was found to vary with the zenith angle of observation as is known from many other theoretical and observational studies. The circular component (second value) was found to be small where the polarization is large. The very large value of the circular component near the sun's position might also contain a relatively large error, since there the polarization is less than 10% (see Eq. 4).

More definite evaluation of our results will be possible once the error analysis of the entire instrument has been finished and theoretical results on the sky radiation have been obtained from multiple scattering calculations. Analyses of further measurements on completely clear and on uniformly covered skies are underway.

REFERENCES

Born, M., and Wolf, E. 1965. Principles of optics (3rd ed.). New York: Pergamon Press. Jäger, F. W., and Oetken, L. 1963. Zur Theorie und Praxis der instrumentellen Polarisation. Publik. d. Astrophys. Observ. Potsdam.